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On new Galilei-invariant equations in two-dimensional
spacetime

V I Lahno†
Pedagogical Institute, Ostrogradskogo Street 2, 314000 Poltava, Ukraine
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Abstract. We study realizations of Galilei groups acting as transformation Lie groups in the
space of two independent variables and one dependent variable. Classification of realizations of
the Lie algebrasAG1(1, 1), AG2(1, 1), AG3(1, 1), AG̃1(1, 1), AG̃2(1, 1) andAG̃3(1, 1) within
the class of Lie vector fields is carried out. Utilizing the classification results we have constructed
the full sets of second-order scalar differential equations in two-dimensional spacetime invariant
under the Lie algebrasAG1(1, 1) andAG̃1(1, 1).

1. Introduction (basic notations and definitions)

A usual restriction imposed on the choice of a mathematical model (differential equation(s))
in non-relativistic physics is that it has to obey the Galilei relativity principle. This means
that on the set of solutions of the differential equation in question some realization of the
Galilei group is to be realized. Consequently, to be able to present a complete set of all
possible equations satisfying the Galilei relativity principle one has to solve an intermediate
problem of describing all inequivalent (in some sense) realizations of the Galilei group by
Lie vector fields [1–4].

In this paper we turn to non-relativistic theories, namely, Galilei invariant ones in 1+1
dimensions and construct the most general equation

F(t, x, u, ut , ux, utt , utx, uxx) = 0 (1)

invariant under the Galilei group. In equations (1)u(t, x) is a real-valued scalar function,
subscripts denote partial derivatives, andF is a smooth real-valued function of the indicated
variables.

The set of equations (1) contains, in particular, such linear and nonlinear Galilei invariant
equations as the heat, the Burger’s and the modified Burger’s equations [1, 2, 5]. ‘Invariance’
is always meant in the ‘strong’ sense, i.e. if a equation (1) is invariant under some one-
parameter group expλQ, then this equation is annihilated by the second-order prolongation
pr(2)Q of Q everywhere, not only on the solution set of (1).

The first step in the derivation of invariant equations is to realize the Lie algebra of the
assumed symmetry group in terms of vector fields on the spaceX⊗U of independent and
dependent variables. In our case,X is the two-dimensional space with coordinatest, x and
U is the space of real scalar functionsu(t, x). The vector fields will all have the form

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u (2)
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whereτ, ξ, η are some sufficiently smooth real-valued functions on the spaceX ⊗ U .
LetAL = 〈Q1, . . . ,QN 〉 be a Lie algebra and its basis operatorsQi satisfy commutation

relations

[Qk,Qm] = CnkmQn (3)

whereCnkm are real-valued constants (structure constants),k,m, n = 1, 2, . . . , N .
We say that operatorsQi(i = 1, . . . , N) of the form (2) realize a representation

(realization by Lie vector fields) of the Lie algebraAL if:
• they are linearly independent,
• they satisfy the commutation relations (3).
It is straightforward to verify that relations (3) are not altered by an arbitrary invertible

transformation of the independent and dependent variables

t ′ = h(t, x, u) x ′ = g(t, x, u) u′ = f (t, x, u) (4)

whereh, g, f are sufficiently smooth functions. Invertible transformations (4) form a group
(called a diffeomorphism group) which establishes an equivalence relation on the set of all
possible realizations of the Lie algebraAL. Two realizations of the Lie algebraAL are
called equivalent if the corresponding basis operators can be transformed into one another
by a change of variables (4).

In what follows we make use of the following classification of Lie algebras of Galilei
groups (called in the following the Galilei algebras) [6].

The Lie algebraAG1(1, 1) = 〈T , P,G〉 is called theclassicalGalilei algebra if its basis
operators satisfy following commutation relations:

[T , P ] = 0 [T ,G] = −P (5)

[P,G] = 0. (6)

The Lie algebraAG2(1, 1) = 〈T , P,G,D〉 is called thespecialGalilei algebra if its
basis operators satisfy the commutation relations (5), (6) and the relations

[D,P ] = −P [D,G] = G [D, T ] = −2T . (7)

The Lie algebraAG3(1, 1) = 〈T , P,G,D, S〉 is called thecompleteGalilei algebra if its
basis operators satisfy commutation relations (5)–(7) and relations

[S,G] = 0 [S, P ] = G [T , S] = D [D, S] = 2S. (8)

Let an operatorM satisfy the following commutation relations:

[M,T ] = [M,P ] = [M,G] = [M,D] = [M,S] = 0 (9)

[G,P ] = M. (10)

The Lie algebrasAG̃1(1, 1) = 〈T , P,M,G〉, AG̃2(1, 1) = 〈T , P,M,G,D〉, AG̃3(1, 1)
= 〈T , P,M,G,D, S〉 are called theextended classicalGalilei algebra, theextended special
Galilei algebra, theextended completeGalilei algebra (the Schrödinger algebra) if their basis
operators satisfy commutation relations (5), (7)–(10).

Note that the Burger’s equation is invariant under the complete Galilei algebra.
Furthermore, the heat and the modified Burger’s equations are invariant under the extended
complete Galilei algebras [1, 2, 5]. Rideau and Winternitz [7] have obtained a complete
description of the realizations of the extended classical Galilei algebra and its generalizations
provided the generators of the timeT , spaceP and phaseM translations can be
simultaneously rectified to become

T = ∂t P = ∂x M = ∂φ. (11)
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(Note that they considered the case of two dependent and two independent variables.) The
results were used to obtain the general forms of the second order evolution equations

ψt + F(t, x, ψ,ψ∗, ψx, ψ∗x , ψxx, ψ∗xx) = 0

invariant under theAG̃1(1, 1), AG̃2(1, 1) andAG̃3(1, 1) algebras.
As noted by Zhdanov and Fushchych [8, 9] this is an additional restriction that does

not follow from the definition of realization of a Lie algebra and thus leads to losing some
classes of Galilei-invariant equations. They have completed the classification of realizations
of the extended classical, extended special and extended complete Galilei algebras in two
independent and two dependent variables. This approach has also been applied to classify
all scalar equations of the form (1) invariant under the Poincaré, extended Poincaré and
conformal algebras [10, 11].

The above papers by Rideau and Winternitz and by Zhdanov and Fushchych consider
the case of the extended classical Galilei algebra, which means thatM 6= 0. In this paper
we study both the caseM 6= 0 and the case of vanishingM, which means that we also
take into consideration realizations of the classical Galilei algebra. What is more, we do
not require that the operatorsT , P , M are reducible to the form (11). The last remark is
that we construct the general Galilei-invariant equations (not only evolution type ones) for
one function of two variables.

This paper is organized as follows. In sections 2 and 3 we obtain all realizations of the
Lie algebrasAG1(1, 1), AG2(1, 1), AG3(1, 1), AG̃1(1, 1), AG̃2(1, 1), AG̃3(1, 1) by Lie
vector fields (LVFs) (2). In section 4 we obtain second-order differential invariants of the
prolonged group action for the above groups which yields the Galilei-invariant equations (1).

2. Realizations of the classical, special and complete Galilei algebras

Before formulating the principal assertion we give an auxiliary lemma.

Lemma 1.Let T , P be mutually commuting linearly independent operators of the form (2).
Then there exists transformation (4) reducing these operators to one of the forms below

T = ∂t P = −∂x (12)

T = ∂t P = −x∂t . (13)

Proof. Let A be a 2× 3 matrix whose entries are coefficients of the operatorsT , P .

Case 1: rankA = 2. It is a common knowledge that any non-zero operatorQ of the form
(2) having smooth coefficients can be transformed by the change of variables (4) to become
Q′ = ∂t ′ , (see, e.g. [1]). Consequently, without loosing generality, we can suppose that the
relationT = ∂t holds (hereafter we skip the primes). As the operatorP commutes withT ,
its coefficients do not depend ont , i.e.

P = τ(x, u)∂t + ξ(x, u)∂x + η(x, u)∂u.
By assumption, one of the coefficientsτ, ξ, η is not equal to zero. Without loss of generality,
we can suppose thatξ 6= 0 (if this is not the case, we make a changex → u, u → x).
Performing the transformation

t ′ = t + f (x, u) x ′ = g(x, u) u′ = h(x, u)
where the functionsf, g, h are solutions of partial differential equations (PDEs)

Pf + τ = 0 Pξ = −1 Ph = 0
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we reduce the operatorsT , P to becomeT = ∂t , P = −∂x .

Case 2: rankA = 1. If me make transformation (3) reducing the operatorT to the form
T = ∂t , then the operatorP becomesP = τ(x, u)∂t (the functionτ does not depend
on t becauseT andP commute). Asτ 6= constant (otherwise the operatorsT andP are
linearly dependent), making the change of variables

t ′ = t x ′ = −τ(x, u) u′ = h(x, u) D(τ, h)

D(x, u)
6= 0

transforms the operatorsT , P to beT = ∂t , P = −x∂t . �

Theorem 1.Inequivalent realizations of the classical Galilei algebra by LVFs (2) are
exhausted by the following realizations:

(1) T = ∂t P = −∂x G = t∂x
(2) T = ∂t P = −∂x G = u∂t + t∂x
(3) T = ∂t P = −∂x G = t∂x + ∂u
(4) T = ∂t P = −x∂t G = xt∂t + x2∂x.

(14)

Proof. To prove the theorem it suffices to solve the commutation relations (5), (6) for the
basis operatorsT , P,G of the classical Galilei algebra within the class of LVFs (2) up to the
action of the diffeomorphism group (4). All inequivalent realizations of the two-dimensional
commutative algebra having the basis operatorsT , P are given by formulae (12), (13). What
is left is to solve the commutation relations for the generator of the Galilei transformations
G = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u

[T ,G] = −P [P,G] = 0 (15)

for each set of operatorsT , P listed in (12), (13).
Let operatorsT , P have the form (12). From the commutation relations (15) we find

thatG must have the form

G = τ(u)∂t + (t + ξ(u))∂x + η(u)∂u. (16)

If in (16) η = 0, then performing the transformation

t ′ = t + ξ x ′ = x u′ = u
we reduce the operatorsT , P,G to the form

T = ∂t ′ P = −∂x ′ G = τ̃ (u′)∂t ′ + t ′∂x ′ . (17)

If in (17) τ̃ = constant, then operatorsT , P,G realize a representation of the algebra
AG1(1, 1) that is equivalent to the first realization from (14). Next, if in (17)τ̃u′ 6= 0, then
performing the transformation

t ′′ = t ′ x ′′ = x ′ y ′′ = τ̃ (u′)
we reduce the operatorsT , P,G to the form 2 from (14).

If in (16) η 6= 0, then performing the transformation

t ′ = t + h(u) x ′ = x + g(u) u′ = f (u) fu 6= 0

where the functionsh, g, f are solutions of equations

Gh+ τ = 0 Gg + ξ = h Gf = 1
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we reduce the operatorsT , P,G to the form 3 from (14).
Finally, let the operatorsT , P be given by (13). From the commutation relations (15)

we find thatG must have the form

G = [tx + τ(x, u)]∂x + x2∂x + η(x, u)∂u.
Performing the transformation

t ′ = t + h(x, u) x ′ = x u′ = f (x, u)
where the functionsh, f are solutions of PDEs

τ + x2hx + ηhu = xh x2fx + ηfu = 0

we reduce the operatorsT , P,G to becomeT = ∂t , P = −x∂t , G = xt∂t + x2∂x . �

Corollary 1. Inequivalent realizations of the special Galilei algebra by LVFs (2) are
exhausted by the following realizations:

(1) T = ∂t P = −∂x G = t∂x
D = 2t∂t + x∂x + εu∂u ε = 0, 1 (18)

(2) T = ∂t P = −∂x G = t∂x + ∂u
D = 2t∂t + x∂x + (λ− u)∂u λ ∈ R (19)

(3) T = ∂t P = −x∂t G = xt∂x + x2∂x

D = 2t∂t + x∂x + εu∂u ε = 0, 1 (20)

(4) T = ∂t P = −∂x G = u∂t + t∂x
D = 2t∂t + x∂x + 3u∂u. (21)

Corollary 2. Inequivalent realizations of the complete Galilei algebra by LVFs (2) are
exhausted by the following realizations:

(1) T , P, G, D have the form (18), whereε = 0

S = t2∂t + tx∂x
(2) T , P,G,D have the form (18), whereε = 1

S = t2∂t + (tx + ε1u
3)∂x + u(t + λu2)∂u

whereε1 = ±1, λ ∈ R, or ε1 = 0, λ = 0,±1

(3) T , P,G,D have the form (19)

S = t2∂t + tx∂x + (x + (λ− u)t)∂u, λ ∈ R
(4) T , P,G,D have the form (20), whereε = 0

S = t2∂t + xt∂x.
Proof of corollaries 1, 2 is analogous to that of lemma 1 and theorem 1. It should be noted
that the realization (21) is not extendable to a realization of the complete Galilei algebra.

3. Realizations of the extended Galilei algebras

We start by constructing inequivalent realizations the operatorsT , P,M.
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Lemma 2.Let T , P,M be mutually commuting linearly independent operators of the form
(2). Then there exists transformations (4) reducing these operators to one of the forms
below

T = ∂t P = −∂x M = ∂u (22)

T = ∂t P = −∂x M = α(u)∂t + β(u)∂x (23)

T = ∂t P = −x∂t M = γ (x)∂t dγ

dx
6= constant (24)

T = ∂t P = −x∂t M = 2u∂t (25)

T = ∂t P = −x∂t M = 2∂u. (26)

Hereα(u), β(u) are arbitrary real-valued functions and| αu | + | βu |6= 0.

Proof of lemma 2 is analogous to that of lemma 1 (see also [8, 9]).
The obtained realizations (22)–(25) can be further extended toAG̃1(1, 1) by adding

an operatorG. Once the commutation relations (5), (9), (10) are satisfied, further
transformations respecting the form of the realizations ofAG̃1(1, 1) can be performed.
The realization (26) of the operatorsT , P,M cannot be extended to a realization of the Lie
algebraAG̃1(1, 1). We present below the final results of our calculations.

Theorem 2.Inequivalent realizations of the extended classical Galilei algebra by LVFs (2)
are exhausted by the following realizations:

(1) T = ∂t P = −∂x M = ∂u,G = t∂x + x∂u
(2) T = ∂t P = −∂x M = ϕ∂t + u∂x
G = xϕ∂t + (t + xu)∂x + (u2+ ϕ)∂u, whereϕ = 0 or

ϕ = ϕ(u) satisfies relation 2ϕ(Cϕ − 1) = u2, C ∈ R
(3) T = ∂t P = −x∂t M = γ (x)∂t
G = xt∂t + (x2− γ (x))∂x, whereγ = γ (x)

(
dγ

dx
6= 0

)
satisfies relationCγ 2+ 2γ = x2, C ∈ R
(4) T = ∂t P = −x∂t M = 2u∂t

G = tx∂t + (x2− 2u)∂x + ux∂u.

(27)

Each of the realizations obtained in theorem 2 can be extended to realizations of the extended
special Galilei algebra by adding a dilation operatorD. Its form is determined by the
commutation relations (7), (9) and can be further simplified by transformations (4). The
corresponding results are given in corollary 3.

Corollary 3. Inequivalent realizations of the extended special Galilei algebra by LVFs (2)
are exhausted by the following realizations:

(1) T = ∂t P = −∂x M = ∂u
G = t∂x + x∂u D = 2t∂t + x∂x + λ∂u, λ ∈ R (28)

(2) T = ∂t P = −∂x M = ϕ∂t + u∂x
G = xϕ∂t + (t + xu)∂x + (u2+ ϕ)∂u
D = 2t∂t + x∂x + u∂u ϕ = 0 or ϕ = − 1

2u
2 (29)

(3) T = ∂t P = −x∂t M = 1
2x

2∂t

G = xt∂t + 1
2x

2∂x
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D = 2t∂t + x∂x + εεu∂u ε = 0, 1 (30)

(4) T = ∂t P = −x∂t M = 2u∂t
G = tx∂t + (x2− 2u)∂x + ux∂u D = 2t∂t + x∂x + 2u∂u. (31)

Thus obtained realizations (28), (29) of the extended special Galilei algebra can be
extended to the realizations of the extended complete Galilei algebra (the Schrödinger
algebra) by adding a generatorS of projective transformations. Its form is determined
by the commutation relations (8), (9) and can be further simplified by transformations (4).
Proceeding as above, we find that the realizations (30) and (31) cannot be extended. We
present the results of our calculations in corollary 4.

Corollary 4. Inequivalent realizations of the extended complete Galilei algebra by LVFs (2)
are exhausted by the following realizations:

(1) T , P,M,G,D have the form (28)

S = t2∂t + tx∂x + ( 1
2x

2+ λt)∂u, λ ∈ R
(2) T , P,M,G,D have the form (29)

S = (t2− 1
4x

2u2)∂t + (tx + 1
2x

2u)∂x + (t + 1
2xu)u∂u.

4. On Galilei-invariant PDEs

In order to obtain invariant equations we use the usual Lie infinitesimal routine [1]. Let
Qa, a = 1, . . . , N , be a basis for the Lie algebraAL of the symmetry group, acting on the
spaceX ⊗ U . In our case,X ⊗ U is the space〈t, x, u〉 and allQa have the form (2). The
equation (1) is invariant under a Lie algebraAL if the functionF satisfies system of PDEs

pr(2)Qa · F = 0 a = 1, . . . , N (32)

wherepr(2)Qa is the second prolongation of the operatorQa.
Thus all what we have to do is to find the characteristic for the set of equations (32).

The characteristics provide us with a set of elementary invariantsJk(t, x, u, uµ, uµν), where
(µ, ν = t, x), k = 1, . . . , s, so that an invariant equation reads as

9(J1, . . . , Js) = 0. (33)

We look for invariants of the Galilei groups for each realization of the corresponding Lie
algebras given in theorems 1 and 2. The number of variables in (1) and (32) is eight. The
algebrasAG1(1, 1) andAG̃1(1, 1) are solvable and the generic orbits of the corresponding
prolonged group action are three- and four-dimensional, respectively. In view of these facts
there are five and four functionally independent invariants, respectively.

The result of our calculations can be summarized as follows.
(1) Elementary invariants of the classical Galilei algebra

(1) J1 = u J2 = ux J3 = utuxx − uxutx
J4 = uttuxx − u2

tx J5 = uxx. (34)

(2) J1 = u J2 = u−2
x (u

2
t + 2ux)

J3 = u−3
x [u2

t uxx − 2utuxutx + u2
xutt ] J4 = uttuxx − u2

tx

J5 = utu−4
x [u2

xutt − 2utuxutx + u2
t uxx ] + u−3

x [utuxx − uxutx ]. (35)

(3) J1 = ut + uux J2 = ux J3 = utuxx − uxutx
J4 = uttuxx − u2

tx J5 = uxx. (36)
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(4) J1 = u J2 = xut J3 = x2utt

J4 = x3[u2
t + x(ututx − uxutt )]

J5 = x4[u2
t + 2x(ututx − uxutt )− x2(uttuxx − u2

tx)]. (37)

(2) Elementary invariants of the extended classical Galilei algebra

(1) 61 = ut + 1
2u

2
x 62 = uxuxx + utx

63 = uttuxx − u2
tx 64 = uxx. (38)

(2) 61 = u−2u−1
x [ux − 2uut ] 62 = (uu−1

x )
3uxx

63 = (uux)−3[u2u3
x − u4utu

2
x + utuxx − uxutx ]

64 = u−1u−3
x [u2

xutt − 2utuxutx + u2
t uxx ]. (39)

(3) 61 = u 62 = x2ut 63 = x4utt

64 = x5[x(uxutt − ututx)− 2u2
t ]. (40)

(4) 61 = (4u− x2)u−2 62 = u4u−4
t (uttuxx − u2

tx). (41)

63, 64 are functionally-independent integrals of the first-order PDE

L · F(θ, σ, ρ) = 0

where

L = θ
√

4θ − αθ2∂θ − σ(
√

4θ − αθ2+ 4ρ)∂σ

+[θσ − 2ρ
√

4θ − αθ2− 2σ−1(βθ−4+ ρ2)]∂ρ.

Variablesθ, σ, ρ and parametersα, β in 63, 64 take the following form:

θ = u σ = u−3
t utt ρ = u−3

t (uxutt − ututx) andα = 61 β = 62.

Note that we have chosen in (27)ϕ(u) = 0 andγ (x) = x2

2 .
Consequently, we have constructed the following classes of Galilei-invariant

equations (1):

9(J1, J2, J3, J4, J5) = 0 (42)

whereJ1, . . . , J5 are given in (34)–(37), and

9(61, 62, 63, 64) = 0 (43)

where61, 62, 63, 64 are given in (38)–(41).
The family of invariant equations (42) includes the Burger’s equation

ut + uux + uxx = 0

obtained by puttingJ1 + J5 = 0, whereJ1, J5 are given in (36), and the Monge–Amperé
equation

uttuxx − u2
tx = 0

obtained by puttingJ4 = 0, whereJ4 is give in (34) or (35) or (36).
The family of invariant equations (43) includes the modified Burger’s equation

ut + 1
2u

2
x + uxx = 0

obtained by putting61+64 = 0, where61, 64 are given in (38), and the Monge–Amperé
equation, obtained by putting63 = 0, where63 is given in (38).
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5. Concluding remarks

We have shown that classification of equations invariant under some spacetime group
involves as a first step the classification of possible realizations by LVFs of the corresponding
Lie algebra. These realizations can be used for classificationnth-order scalar Galilei-
invariant PDEs withn > 2. Let us mention as an example the Korteweg–de Vries equation

ut + uxxx + uux = 0

which is invariant under classical Galilei algebraAG1(1, 1).
Since equations obtained admit by construction non-trivial Lie symmetry groups, one

can apply the symmetry reduction technique to find their exact solutions. This is done via
reduction of the two-dimensional PDEs (42), (43) to ordinary differential equations with the
help of special substitutions (invariant solutions) [1].

These and other related problems are under investigation now and will be a topic of our
future publications.
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